Nuclear and Particle Physics

1. Whe	en a nucleus d	of uranium-238	absorbs a n	eutron, one	combination	of fission	products c	an be tin	-126 a	and a
nucleu	s of element 2	K. 13 neutrons	are also emi	tted.						

$${}^{238}_{92}U + {}^{1}_{0}n \rightarrow X + {}^{126}_{50}Sn + 13{}^{1}_{0}n$$

How many neutrons are there in the nucleus of element X?

- B. 42
- C. 58 D. 100

Your answer	

[1]

2. The total energy released in a single fusion reaction is 4.0 MeV.

What is the change in mass in this fusion reaction?

- $7.1 \times 10^{-36} \text{ kg}$
- $7.1 \times 10^{-30} \text{ kg}$
- $2.1 \times 10^{-21} \text{ kg}$
- $4.4 \times 10^{-17} \text{ kg}$

Your answer

[1]

3. State what is meant by the decay constant of an isotope.

[1]

4. A graph of binding energy per nucleon against nucleon number is shown below.

nucleon number

Which nucleus, A, B, C, or D, shown on the graph has the largest magnitude of binding energy?

Your answer

[1]

5 . T	The nuclei of uranium-235 ([92]) and carbon-12 ([6]) have different radii.	
Wh	at is the ratio	
	radius of the uranium nucleus ?	
A B C D	2.5 2.7 15 20	
You	ur answer	[1]
6. A Whi	A contrast material is used while taking an X-ray image of a patient. ich statement is correct?	
A B C D	Iodine is a contrast material. Technetium is a contrast material. A contrast material must have a short half-life. A contrast material is used for acoustic matching.	
You	ur answer	[1]
	A positive pion (π^+) is an unstable particle produced when high-speed hadrons collide in particle ace π^+ particle has a charge of $+e$.	celerators.
Wh	at is the quark combination of the $\pi^{\scriptscriptstyle +}$ particle?	
A B C D	u u u u d d u d d d d	
You	ur answer	[1]
8. V	Which lepton is emitted in the decay of an up quark and is affected by a magnetic field?	
A B C D	neutrino electron positron antineutrino	
You	ur answer	[1]

Your answer

9. The table shows data on four freshly prepared radioactive samples ${\bf A},\,{\bf B},\,{\bf C}$ and ${\bf D}.$

Sample	Number of active nuclei in the sample	Half-life of the sample
Α	N	Τ
В	N	3 <i>T</i>
С	5 <i>N</i>	0.5 <i>T</i>
D	8 <i>N</i>	47

Whic	h sample h	as the smallest	activity?			
Your	answer					[1]
10. T	he table be	low shows the q	uark compositio	ns of four partic	les A, B, C and D.	
	Α	В	С	D]	
	u u d	u d d	u d s	SSS		
Whic	h particle h	as a positive cha	arge?			
Your	answer				[1]
11 . E	lectrons tra		a thin layer of po		tal are diffracted. diffraction rings	
Whic	h statemen	t is correct abou	t these electrons	?		
[(3. The election of the electio	ectrons have a w ectrons are diffra	photons through eavelength of abo cted by holes in th other to produ	out 10 ⁻¹⁰ m. the metal.	n.	
Your	answer					[1]
partic				nucleus. The c $^{8}_{9}$ O \rightarrow $^{18}_{9}$ F \rightarrow	ollision produces a fluorine-18 nucleus and	
Α	neutron					
В	proton					
С	electron					
D	positron					

[1]

13. A student is modelling the decay of a radioactive source using the equation $\Delta N / \Delta t = -0.5 N$. The student decides to use $\Delta t = 0.10$ s. The number N of radioactive nuclei is 2000 at t = 0.

Part of the modelling spreadsheet from the student is shown below.

t/s	Number N of radioactive nuclei remaining at time t	Number of nuclei decaying in the next 0.10 s
0	2000	100
0.10	1900	
0.20		
0.30		

-			
0.20)		
0.30)		
		+	
What	t is the	e value of <i>N</i> at <i>t</i> = 0.30 s?	
Α	1700		
В	1710		
С	1715	5	
D	1805	5	
Your	r answ	wer	[1]
14 \/	Which	statement is correct?	
1 -7. V	VIIICII	statement is correct:	
A B C D	A po	rons are made up of protons and neutrons. positron and a proton are examples of leptons. positron and the electron have the same mass. weak nuclear force is responsible for alpha-decay.	
Your	r answ	wer [1]
15. T	he rad	dius of a gold nucleus with 197 nucleons is 7.3×10^{-15} m.	
What	t is the	e best estimate for the volume of a uranium nucleus with 235 nucleons?	
Α	1.6 ×	× 10 ^{−42} m ³	
В	1.9 ×	× 10 ^{−42} m ³	
С	2.1 ×	× 10 ^{−42} m ³	
D		× 10 ^{−42} m ³	
Your	r answ		[1]

16. Two leptons are emitted when a down quark decays into an up quark.

Which of the following is correct about this decay?

	force responsible for the decay	leptons emitted
A	strong nuclear	positron and antineutrino
В	weak nuclear	positron and neutrino
С	strong nuclear	electron and neutrino
D	weak nuclear	electron and antineutrino

[1]

	D	weak nuclear	electron and	antineutrino
Your	answer			
The	A radiation detector is placed count-rate is measured and results are shown below.			
311	s ⁻¹ 309 s ⁻¹	299 s ⁻¹	307 s ⁻¹	321 s ⁻¹
Wha	t term can be used to descri	pe the data shown?		
A B C D	exponential linear random spontaneous			
You	r answer			[1]
18. 7 nucle	The nucleus of thorium-232 (eus of an isotope of radium.	²³² Th) _{emits} two alpha part	icles and two beta-	minus particles to become
Wha	t is the nucleon number A ar	nd the proton number Z for	the nucleus of this	radium isotope?
A B C D	A = 224, Z = 88 A = 228, Z = 86 A = 224, Z = 84 A = 228, Z = 88			
You	r answer			[1]

6.4 Nuclear and Particle Physics

19. Which is the correct decay of a quark? **A** $u \rightarrow d + 0 - 1e + v_e$

A
$$u \rightarrow d + {}^{0}e + v$$

$$\mathbf{B} \qquad u \rightarrow d + {}^{0}_{-1}\mathbf{e} + v_{\mathbf{e}}$$

$$\mathbf{C} \qquad d \rightarrow u + {}^{0}_{-1}\mathbf{e} + v_{\mathbf{e}}$$

$$D \qquad d \rightarrow u + {}^{0}_{-1}e + {}^{\overline{\nu_{e}}}$$

Your answer	

[1]

20. State what is meant by induced nuclear fission.

21. Write a decay equation for beta-minus in terms of a quark model.

[2]

[1]

22. A beam of α -particles is incident on a thin gold foil. Most α -particles pass straight through the foil. A few are deflected by gold nuclei.

The diagram shows the path of one α -particle which passes close to a gold nucleus **N** in the foil. The α -particle is deflected through an angle of 60° as it travels from **A** to **B**.

P marks its position of closest approach to the gold nucleus.

Another α -particle in the beam is deflected by the same gold nucleus **N** through an angle of 30°.

Sketch its path onto the diagram above.

[2]

23. A radioactive substance has 2000 nuclei. The decay constant of the isotope of the substance is 0.10 s⁻¹.

Use the equation $\frac{\Delta N}{\Delta t} = -\lambda N$ and $\Delta t = 1.0$ s to estimate the number of nuclei left after time t = 2.0 s.

number of nuclei left =[2]

24. Fig. 21 shows stable and unstable nuclei of some light elements plotted on a grid. This grid has number of neutrons *N* on the vertical axis and number of protons *Z* on the horizontal axis.

The key on Fig. 21 shows whether a nucleus is stable, emits a beta-plus particle or emits a beta-minus particle to become stable.

For Z = 7, suggest in terms of N why an isotope may emit

i. a beta-minus particle

[1]

ii. a beta-plus particle.

25 (a). A stationary uranium-238 nucleus $\binom{238}{92}$ U decays into a nucleus of thorium-234 by emitting an alphaparticle.	
The chemical symbol for thorium is Th. Write a nuclear equation for this decay.	
[2]	
(b). The mass of the uranium nucleus is 4.0×10^{-25} kg. After the decay the thorium nucleus has a speed of 2.4×10^5 m s ⁻¹ .	
Calculate the kinetic energy, in MeV, of the alpha-particle.	
	- 41
kinetic energy = MeV	[4]
(c). The uranium-238 $\binom{238}{92}$ U nucleus starts the decay chain which ends with a nucleus of lead-206 $\binom{206}{82}$ Pb. Show that 14 particles are emitted during this decay chain. Explain your reasoning.	
[3]	
26 (a). Stars produce energy by nuclear fusion. One particular fusion reaction between two protons $\binom{1}{1}H$ is shown below. $ \binom{1}{1}H + \binom{1}{1}H \rightarrow \binom{2}{1}H + \binom{0}{1}e + v $	
In this reaction 2.2 MeV of energy is released.	
Only one of the particles shown in the reaction has binding energy. Determine the binding energy per nucleon of this particle. Explain your answer.	
	
	[2]

(b). Explain why high temperatures are necessary for fusion reactions to occur in stars.		
		[2]
(c). In this reaction 2.2 MeV of energy is released.		
A gamma photon in a star can spontaneously create an electron-positron pair. Calculate the maximum wavelength of a gamma photon for this creation event.		
maximum wavelength =	m [3]	
27 (a). Describe the nature of the strong nuclear force.		
		[2]
i. Name a hadron found in the nucleus of an atom and state its quark combination.		
name of hadron: quark combination:		[1]
ii. Write a decay equation in terms of a quark model for beta-minus decay.		
		[2]
		L
(c). The radius of a nucleus is directly proportional to $A^{1/3}$, where A is the nucleon number. The mass of a proton and a neutron are similar. Explain why the mean density of all nuclei is about the same.		
		[2]

28. A researcher is doing an experiment on a radioactive solution in a thin glass tube.

The solution has two radioactive materials **X** and **Y**.

The table below shows some data on these two materials.

	Material X	Material Y
Half-life 10 minutes		10 hours
Particles emitted	Alpha	Beta-minus
Daughter nuclei	Stable	Stable

The solution has the same number of nuclei of \boldsymbol{X} and \boldsymbol{Y} at the start.

i.	i. State and explain which material has the greatest activity at the start.		
		[1]	
ii.	State why it is dangerous for the researcher to handle the test tube with bare hands.		

29. Fig. 24 shows two horizontal metal plates in a vacuum.

The arrangement shown in **Fig. 24** is now used to investigate positrons emitted from a radioactive source. The speed of the positrons is also 6.0×10^7 m s⁻¹.

The initial path of the positrons is the same as that of the electrons in Fig. 24.

On Fig. 24, sketch the path of the positrons between the plates.

[1]

6.4 Nuclear and Particle Physics

30. Explain the function of the control rods and the moderator in a nuclear fission reactor.

31. X-ray photons interact with atoms.

The attenuation coefficient against Ig(photon energy) graphs for simple scattering (**S**), photoelectric effect (**PE**), Compton effect (**C**) and pair production (**PP**) are shown below.

With the help of a calculation, explain the minimum photon energy for pair production.

[3]

[2]

32.
$$^{60}_{27}\text{Co}$$
 is produced by irradiating the stable isotope $^{59}_{27}\text{Co}$ with neutrons.

Each nucleus of $^{60}_{27}$ Co then decays into a nucleus of nickel (Ni) by the emission of a low energy beta-minus particle, one other particle and two gamma photons.

Complete the nuclear equations for these two processes.

$$^{59}_{27}$$
Co +n \rightarrow $^{60}_{27}$ Co \rightarrow Ni +e + + 2γ

33. Calculate the maximum wavelength of the X-rays for the pair production process.

34. Fig. 22.1 shows the circular track of a positron moving in a uniform magnetic field.

Fig. 22.1

The magnetic field is perpendicular to the plane of **Fig. 22.1**. The speed of the positron is $5.0\times10^7~{\rm m~s^{-1}}$ and the radius of the track is 0.018 m.

At point **B** the positron interacts with a stationary electron and they annihilate each other. The annihilation process produces two identical gamma photons travelling in opposite directions.

Calculate the wavelength of the gamma photons. Assume the kinetic energy of the positron is negligible.

35 (a). An isotope of polonium-213 ($^{213}_{84}$ Po) first decays into an isotope of lead-209 ($^{209}_{82}$ Pb) and this lead isotope then decays into the stable isotope of bismuth (Bi).

Fig. 24 shows two arrows on a neutron number *N* against proton number *Z* chart to illustrate these two decays.

Complete the nuclear decay equations for

i. the polonium isotope

$$^{213}_{84}$$
Po \longrightarrow $^{209}_{82}$ Pb +

ii. the lead isotope.

$$^{209}_{82}$$
Pb $\longrightarrow ^{100}_{83}$ Bi + $^{0}_{-1}$ e +

(b). A pure sample of polonium-213 is being produced in a research laboratory.

The half-life of $^{213}_{~84}$ Po is very small compared with the half-life of $^{209}_{~82}$ Pb.

After a very short time, the ionising radiation detected from the sample is mainly from the beta-minus decay of the lead-209 nuclei.

i.	Briefly describe and explain an experiment that can be carried out to confirm the beta-minus radiation emitted from the lead nuclei.	
		[2]
ii.	The activity of the sample of $^{209}_{82}$ Pb after 7.0 hours is 12 kBq.	
	The half-life of 82 Pb is 3.3 hours.	
	Calculate the initial number of lead-209 nuclei in this sample.	
	number of nuclei =	[4]
and it e A fresh of a hos	e medical tracer technetium-99m is used in gamma scans. Technetium-99m has a half-life of 6.0 hours mits gamma rays. sample of a radiopharmaceutical containing technetium-99m is prepared in the radiography departments pital. The initial activity of the radiopharmaceutical is 820 MBq. The radiopharmaceutical is injected interesting the some time later when its activity has dropped to 630 MBq.	
Calcula patient.	te the time in hours between the radiopharmaceutical being produced and it being injected into the	
	time =h	[3]
37. The Name the	e nucleons inside a ³ Hnucleus experience gravitational force and one other type of force. his other type of force and describe its nature.	
		[3]

Describe how a PET scanner is used to locate an area of increased activity within the patient.	
,	
	[4]
(b). The half-life of fluorine-18 is 110 minutes. Calculate the time <i>t</i> in minutes for the activity of the radiopharmaceutical to decrease to 30% of its initial activity.	ty.
<i>t</i> = minutes [3]	
(c). PET scanners are not available in all hospitals. This is because fluorine-18 requires expensive on-site	
particle accelerators and fluorine-18 has a very small 'shelf-life'. Suggest the impact this may have on the treatment and diagnosis of patients in the country.	
	[1]
39. A beam of α-particles is incident on a thin gold foil. Most α-particles pass straight through the foil. A few are deflected by gold nuclei.	
The diagram shows the path of one α -particle which passes close to a gold nucleus N in the foil. The α -particle is deflected through an angle of 60° as it travels from A to B .	
P marks its position of closest approach to the gold nucleus.	
В	

α-particle path

The dist	tance between P and N is 6.8×10^{-14} m.
Calcula the α-pa	te the magnitude of the electrostatic force F between the α -particle $\binom{4}{2}$ He) and the gold nucleus $\binom{197}{79}$ Au) when article is at P .
	F = N [4]
40 . Exp	lain the role of the moderator and the control rods in a nuclear reactor.
	[4]
Nuclei c	chemical composition of ancient rocks found on the Earth can be used to estimate the age of the Earth. of rubidium-87 $\binom{87}{37}$ Rb) decay spontaneously into nuclei of strontium-87 $\binom{87}{38}$ Sr). f-life of rubidium-87 is 49 billion years.
i.	Name the two leptons emitted in the decay of a rubidium-87 nucleus.
1.	
2.	[1]
ii.	The percentage of rubidium left in a sample of an ancient rock is 95%.
	Estimate the age of the Earth in billion years.
	age = billion years [3]

- **42.** Fluorodeoxyglucose (FDG) is a radioactive tracer often used for PET scans. It contains radioactive fluorine-18, which is a positron-emitter. Some information about FDG and fluorine-18 is given below.
 - 9.9% of the mass of FDG is fluorine-18.
 - The half-life of fluorine-18 is 6600 s.
 - The molar mass of fluorine-18 is 0.018 kg mol⁻¹.

A patient is injected with FDG. The initial activity of FDG is 400 MBq.

Use the information given to calculate the initial mass of FDG given to the patient.

43. The structure of atoms was deduced in the early 1900s by Rutherford and his co-workers from the scattering of alpha-particles by a very thin sheet of gold.

Rutherford assumed that the scattering of the alpha-particles was due to electrostatic forces. Fig. 23 shows a detector used to record the number N of alpha-particles scattered through an angle θ .

At $\theta = 0^{\circ}$, N was too large to be measured. The table below summarises some of the collected data.

θ/°	Ig (N)
150	1.5
75	2.3
60	2.7
30	3.9
15	5.1
0	N too large

 Show that the number of alpha-particles scattered through 15° is about 4000 times more than those scattered through 150°.

ii.	Use the evidence from the table to explain the structure of the atom.
	[3]
	e 1800s, the atom was considered to be a fundamental particle. It was an indivisible particle of matter. physics shows that this idea is not correct.
Describe In your a	e the fundamental particles within an atom of carbon-14 $\binom{14}{6}$ C). answer state the composition of the hadrons.
	[4]
45. Carb	pon-14 $\binom{^{14}{6}C}{}$ is produced in the upper atmosphere of the Earth by collisions between nitrogen nuclei and ving neutrons.
The nuc	lear transformation equation below shows the formation of a single carbon-14 nucleus.
	$^{14}_{7}N + ^{1}_{0}n \rightarrow ^{14}_{6}C + X$
	Fig. 22
i.	State the proton number of particle X.
	proton number =[1]

ii.	Use the data below to determine the binding energy per nucleon of the $^{14}_{\ 6}{}^{\rm C}$ nucleus. Write your answer to 3 significant figures.
	mass of neutron = 1.675×10^{-27} kg mass of proton = 1.673×10^{-27} kg
	mass of ${}^{14}_{6}$ C nucleus = 14.000 u
	$1 \text{ u} = 1.66 \times 10^{-27} \text{ kg}$
	binding energy per nucleon =
46. The	half-life of the isotope carbon-14 is 5700 years (y).
i.	Show that the decay constant λ for this isotope is about 1.2 × 10 ⁻⁴ y ⁻¹ .
	[1]
ii.	Carbon-dating is a technique used to date an ancient wooden axe. The ratio of carbon-14 to carbon-12 in the axe material is 78% of the current ratio of carbon-14 to carbon-12 in a living tree.
	Calculate the age in years of the wooden axe.
	age = y [3]
iii.	State one assumption made in the calculation in (ii) .
	oraco ono accampaca marco carcarata marcara (n).

47. The fusion of two ${}^{3}_{1}H_{nuclei}$ produces a stable nucleus of ${}^{2}_{2}He_{and}$ some fast-moving neutrons.		
i.	Explain why the fusion of the ³ Hnuclei must produce two neutrons.	
		[2]
ii.	The total energy released in this fusion reaction is 11 MeV. The binding energy per nucleon of the ⁴ ₂ houcleus is 7.1 MeV. Calculate in J the binding energy per nucleon of the ³ ₁ houcleus.	le
	binding energy per nucleon =	[3]
48. Ura	anium-235 is used in many fission reactors as fuel and fusion reactors are still at an experimental stage.	
i.	State one major disadvantage of having fission reactors.	
		[1]
ii.	The fission of a uranium-235 nucleus releases about 200 MeV of energy, whereas the fusion of four hydrogen-1 nuclei releases about 28 MeV. At first sight it would appear that fusion would produce less energy than fission. However the energy released in the fission of one kilogramme of uranium-235 is about eight times less than the energy released in the fusion of one kilogramme of hydrogen-1.	
	Explain this by considering the initial number of particles in one kilogramme of each.	

			[4]
49 (a).	A grain o	of a radioactive powder which emits gamma rays accidentally falls onto the workbench.	
		nma-ray detector is used to look for this grain. The grain can be assumed to be a point source liation uniformly in all directions.	
The ba	ckgroun	d count-rate before the accident was negligible.	
The de	tector re	gisters a count-rate of 20 s ⁻¹ when it is 1.0 m from the grain.	
i.	Explai	n why the count-rate rises to 320 s ⁻¹ when the detector is moved to 0.25 m from the grain.	
			[2]
ii.		lead sheet is now placed on the bench over the grain. This causes the count-rate to halve to 16 ne detector is moved from its position at 0.25 m towards the grain until the count-rate returns to 1.	0
	1	State the value of the count-rate if the sheet is now removed.	
		count-rate = s ⁻¹	[1]
	2	Calculate the distance of the detector from the grain.	
		diatanaa - m	[2]
		distance = m	[4]
	Fig. 5 sho ctive eler	ows a thin slice of rock mounted on the face of a lead holder. The rock contains several different ments.	t
		source holder rock sample	

Fig. 5

A space has been left for you to draw one or more diagrams to show the arrangement of your apparatus	Plan one or more experiments to determine the nature of the emissions from the sample.	
	A space has been left for you to draw one or more diagrams to show the arrangement of your apparatus	
[6]	[61	

50 . A po	possible fission reaction is ${}^{1}_{0} n + {}^{235}_{92} U \rightarrow {}^{236}_{92} U \rightarrow {}^{98}_{38} Sr + {}^{136}_{54} Xe + {}^{1}_{0} n$
where <i>k</i>	is the number of neutrons released in the reaction. The $^{236}_{92}$ U nucleus is very unstable.
i.	State the number k of neutrons released in this reaction.
	k =[1]
ii.	State the binding energy of the released neutrons.
	[1]
iii.	A nuclear reactor uses uranium-235 as fuel. The output power from the reactor is 1.0 GW. The mass of the $^{236}_{92}$ Unucleus is 236.053 u. The total mass of the fission products is 235.840 u.
	Calculate the number of fission reactions per second.
	number of reactions per second =s ⁻¹ [4]

11. * Describe the processes of fission and fusion of nuclei stating one similarity and one difference between the wo processes. Describe the conditions required for each process to occur in a sustained manner.						
			·	·		
						[6]

52. * A group of students are investigating the decay of protactinium. A fresh sample of protactinium is prepared. The activity of the sample was measured at intervals of 1.0 minutes for 6.0 minutes.

The table shows the activity corrected for background radiation.

time t / min	0	1.0	2.0	3.0	4.0	5.0	6.0
activity A / Bq	943	523	287	161	79	61	20

Fig. 20 shows the variation of ln(A) with time t.

Fig. 20

Explain how the graph in Fig. 20 can be used to determine the half-life of protactinium. Determine the fe of protactinium. Include an uncertainty in your value.	e half-

6.4 Nuclear	and Particle Physics	
		[6]
	53. This question is about the Sun and its radiation.	
	* A student attends a lecture about the Sun and makes the following notes.	
	1. The Sun loses more than 4×10^9 kg of its mass every second to maintain its luminosity.	
	2. Treating hydrogen nuclei (protons) as an ideal gas, a temperature of 10 ¹⁰ K provides a kinetic energy of about 1 MeV, which is necessary for fusion.	
	However, the Sun's core temperature is only 10 ⁷ K, so the chance of protons fusing on collision is very small. This explains why the Sun has such a long lifetime.	
	Explain the principles of physics which are involved in each of the three points. You should include relevant formulae, but no numbers or calculations are required.	

[6]	

54. * Lead of different thicknesses can be used to investigate the absorption of gamma photons from a radioactive source.

Fig. 23.1 shows a graph of gamma photon energy against the half-thickness of lead. Half-thickness of lead is the thickness of lead which will reduce the original count-rate by half.

Fig. 23.1

Describe an experiment that can be carried out to determine the half-thickness of lead and how you would use your results with Fig. 23.1 to determine the energy of a gamma photon from a radioactive gamma source in your laboratory.			
Include the equipment used, any safety precautions necessary and how the quality of the results may be improved.			

[6]

55. * A graph of the density ρ of a nucleus against distance d from the centre of the nucleus is shown below.

The radius of the nucleus r is taken as the distance d where the density is half the maximum density.

Fig. 21.1 shows the density ρ variation for three different nuclei and **Table 21.1** shows the nucleon number A of each nucleus.

Fig. 21.1

Nucleus	Nucleon number A
Al-27	27
Mo-96	96
Hg-200	200

Table 21.1

Use the information provided opposite to

- describe how the density of a nucleus depends on its nucleon number A
- show numerically that $r \propto A^{1/3}$

•	estimate the mean density of the nuclei.

6.4 Nuclear and Particle Physics	
	[6]
56. This question is about a space probe which is in orbit around the Sun.	
The power source for the instrumentation on board the space probe is plutonium-initially.	238, which provides 470 W
Plutonium-238 decays by α -particle emission with a half-life of 88 years. The kinetic energy of each α -particle is 8.8 × 10 ⁻¹³ J.	
i. Calculate the number N of plutonium-238 nuclei needed to provide the p	power of 470 W.
N =	[3]

II.	Calculate the	nower P still	available from	the nlutonium	-238 source	100 years later.

Ρ	=	 W	[3]

57. Some nuclear fission reactors use uranium-235 as fuel. In the future, there is possibility of using hydrogen-2 as fuel in fusion reactors.

Here is some information and data on fission and fusion reactions.

	Fission reactor	Fusion reactor
Typical reaction	$^{1}_{0}$ n + $^{235}_{92}$ U \rightarrow $^{144}_{56}$ Ba + $^{89}_{36}$ Kr + $^{1}_{0}$ n	$_{1}^{2}H + _{1}^{2}H \rightarrow _{1}^{3}H + _{1}^{1}H$
Approximate energy produced in each reaction	200 MeV	4 MeV
Molar mass of fuel material	uranium-235: 0.235 kg mol ⁻¹	hydrogen-2: 0.002 kg mol ⁻¹

•	Describe the similarities and the differences between fission and fusion reactions.
•	Explain with the help of calculations, which fuel produces more energy per kilogram.

[6]

58. The diagram below shows the arrangement of the 3 protons inside the nucleus of lithium-6 $\binom{6}{3}$ Li).

The separation between each proton is about 1.0×10^{-15} m.

i. Calculate the magnitude of the repulsive electric force F experienced by the proton P.

F = N [4]

11.	On the diagram above, draw an arrow to show the direction of the electric lorce r experienced by r .
	[1]
iii.	Explain how protons stay within the nucleus of lithium-6.
	[2]
59.	The nuclear reaction below shows how the isotope of $1000000000000000000000000000000000000$
oxyg	gen-18 (¹⁸ ₈ O) .
	$^{18}_{8}O + ^{1}_{1}p \rightarrow ^{18}_{9}F + ^{1}_{0}n + \gamma$
The	oxygen-18 nucleus is stationary and the proton has kinetic energy of 0.25×10^{-11} J.
The The	binding energy of the $^{18}_{8}$ Onucleus is 2.24×10 ⁻¹¹ J and the binding energy of the $^{18}_{9}$ F nucleus is 2.20×10 ⁻¹¹ J. proton and the neutron have zero binding energy.
i.	Explain why a high-speed proton is necessary to trigger the nuclear reaction shown above.
	[2]
ii.	Estimate the minimum wavelength λ of the gamma ray photon (γ).

iii.	Fluorine-18 is a positron emitter. Name a medical imaging technique that uses fluorine-18 and state one benefit of the technique.
	[2]
60. Ins reactio	ide a nuclear reactor, fission reactions are controlled and chain reactions are prevented. A typical fission n of the uranium-235 nucleus $\binom{235}{92}$ is illustrated below.
${}_{0}^{1}n + {}_{0}^{2}$	$^{35}_{22}U \rightarrow ^{141}_{55}Cs + ^{93}_{37}Rb + 2^{1}_{0}n$
The ne	utron triggering the fission reaction moves slowly. The neutrons produced in the fission reaction move fast.
i.	Describe what is meant by chain reaction .
	[2]
ii.	Explain how chain reactions are prevented inside a nuclear reactor.
	[2]
iii.	The energy released in each fission reaction is equivalent to a decrease in mass of 0.19 u. A fuel rod in a nuclear reactor contains 3.0% of uranium-235 by mass.
	Estimate the total energy produced from 1.0 kg of fuel rod.
	molar mass of uranium-235 = $0.235 \text{ kg mol}^{-1}$ 1 u = $1.66 \times 10^{-27} \text{ kg}$

energy =J [4]

61. $^{60}_{27}\text{Co}$ is produced by irradiating the stable isotope $^{59}_{27}\text{Co}$ with neutrons.

Each nucleus of $^{60}_{27}$ Co then decays into a nucleus of nickel (Ni) by the emission of a low energy beta-minus particle, one other particle and two gamma photons.

Students want to carry out an investigation into gamma photon absorption using a source of $^{60}_{27}$ Co . They add sheets of lead between the source **S** and a radiation detector **T**, to give a total thickness *d* of lead. **S** and **T** remain in fixed positions, as shown in Fig. 2.1.

Fig. 2.1

i. The $^{60}_{27}\mathrm{Co}$ source emits beta radiation as well as gamma radiation.

Explain why this would not affect the experiment.

[1]

ii. The students record the number N of gamma photons detected by \mathbf{T} in 10 minutes for each different thickness d of lead. The background count is negligible.

The results are shown in a table. The table includes values of ln N, including the absolute uncertainties.

N	d/mm	In N
4300 ± 440	0	8.37 ± 0.10
2500 ± 250	0	7.82 ± 0.10
1400 ± 150	20	7.24 ± 0.11
800 ± 90	30	6.68 ± 0.11
500 ± 60	40	6.21 ± 0.12
300 ± 40	50	

N and *d* are related by the equation $N = N_0 e^{-\mu}$ where N_0 and μ are constants.

1. The students decide to plot a graph of ln N against d.

Show that this should give a straight line with gradient = $-\mu$ and y-intercept = $\ln N_0$.

Complete the missing value of ln N in the table, including the absolute uncertainty.
 Show your calculation of the absolute uncertainty in the space below.

[2]

- 3. In Fig. 2.2, five of the data points have been plotted, including error bars for $\ln N$
 - Plot the missing data point and error bar.
 - Draw a straight line of best fit and one of worst fit.

Fig. 2.2

[2]

4. Use Fig. 2.2 to determine the value of μ in m⁻¹, including the absolute uncertainty.

$$\mu = \dots \pm \dots \pm m^{-1}$$
 [4]

5.	Determine the thickness, $d_{1/2}$, of lead which halves the number of gamma photons reaching T .
	<i>d</i> ½ = m [2]
62. This	question is about helium in the atmosphere of the Earth.
Experim the Eart	nent shows that most of the Earth's atmosphere is contained within a very thin shell around the surface of the change of the cha
The heig	ght of the atmosphere is negligible compared with the radius $\it R$ of the Earth.
i.	Show that the minimum speed v_E required for an atom or molecule to escape from the top of the Earth's atmosphere is given by the expression
	$v_{E} = \sqrt{2gR}$.
	[3]
ii.	The radius R of the Earth is 6.4 × 10 ⁶ m. Calculate this escape speed v_E .
	al man
	v _E = m s ⁻¹ [1]
iii.	Calculate the temperature T in kelvin required at the top of the Earth's atmosphere for the root mean square speed $c_{r.m.s.}$ of the helium atoms there to equal this escape speed.
	Molar mass of helium = 0.004 kg mol ⁻¹
	<i>T</i> = K [3]

iv. Fig. 1 shows the distribution of the speeds of the atoms of an ideal gas.

Fig. 1

	Use your knowledge of the kinetic theory of gases to describe the shape of this distribution and explain why some helium is able escape from the Earth.
	[4]
v.	Over a very long period of time all of the helium should have escaped from the Earth. Suggest why there is still a small amount of helium, about 0.0001%, in the Earth's atmosphere.

[2]